Feed The Beast Wiki

Follow the Feed The Beast Wiki on Discord or Mastodon!

READ MORE

Feed The Beast Wiki
Register
Advertisement

Introduction

First and foremost the most important note of all: GregTech is an overhaul mod. It is not just an add-on that supplements other mods (mainly IC2): it has its own tech tree, its own progression curve, its own balance, and now a machine for every task. A lot of so-called nerfs in GregTech are just incentives for a more streamlined experience.

For example, to tackle a lot of complaints:

  • You cannot make Charcoal from Wood because GT has its own Coke Oven to do so.
  • Vanilla tools are heavily nerfed because GT has its own variations and each has its advantages.
  • While you can mix tin and copper dusts together to make bronze dusts (in the dedicated GT6 mixer), most alloys cannot work that way, you cannot simply combine the ingots, and it is inefficient because you receive less bronze than with the intended method, which is mixing and melting them together in a crucible.

So if you ever feel constrained, or limited in a boring way (like grinding a lot of resources or just being in a technological dead-end), remember that in GT6 there might be an easier way: in GregTech you will progress slowly, but it will be fun.

General Notes

NEI is GregTech's best friend. GT has a lot of information in its tooltips and recipes being able to browse them is paramount. However, it can often show more recipes than are actually necessary or useful, as GregTech contains many, many 'recycling' recipes (which simply convert materials into different forms, or break apart machinery into the metals used to make it), and many recipes that can be produced yet because the basic materials are not setup to spawn in the world. One of the more important recipe category in NEI is "Combination smelting". You can browse this category when you search for an alloy ingot recipe (for instance Bronze). There's also a GT Book of Alloys in-game, but it's much more inconvenient because there's no search functionality in it, compared to NEI. Take the time to be familiar with the R/Left-click and U/Right-click shortcuts to quickly jump between items and their recipe/usage.

GregTech ores generate in many forms, however the three that are the most useful are Small, Sand, and Gravel. Small Ores have a lower Mining Level than their regular versions, and when broken will drop Crushed Ore (or a Gem if possible). Sand and Gravel Ores are mined with a Shovel rather than a Pickaxe, however much more importantly, will obey gravity and fall if unsupported. This can be exploited by placing a Torch underneath the stack of falling sand to drop Sand and Gravel Ores without the tool mining levels that would normally be required. Because of this property of Sand Ores, Desert biomes can make for good starting locations, as with little luck can an ore vein be found at the surface and easily gathered.

The extended debug display can be opened by pressing the "H" key after holding the F3 key. This display allows the player to view the Melting and Boiling Points of all items that can be thrown into a Smelting Crucible, along with their constituents. If you use NEI, another one of its perks is that you can cycle through chunk display modes with "F9". The red lines are chunk corners, so mining straight down on these lines allow you to check the content of 4 chunks at once. In GT6 a vein spawns in every 3 chunks so if you arrange a digging matrix by using these red lines, you can easily map the locations of several veins around your base. Additionally since there's only one vein every 3 chunks you can stop digging as soon as you've reach a vein: there won't be another one under it (although there still might be sparse small ores beneath it).

In GregTech Iron is not an early material so instead of regular Iron Buckets, you can start with Wooden Bucket to carry cool liquids like Water or Milk. Of course you won't be able to carry lava or any other melted material. Another thing to note is that since Wooden Buckets are meant to place liquids into the world, you cannot drink from them. Use other means of bottling to drink.

Skeletons have a small chance (1/16 by default) to fire a random GregTech Arrow instead of a conventional arrow. This includes arrows tipped with radioactive materials, which cause Radiation Poisoning on hit. Carrying Milk can be a good idea, because Milk counters Radioactivity (but remember: not in a bucket because you can't drink from it!)

One of the most valuable resources in the early game is loot. Metal armor found in dungeons/villages/mineshaft chests can be melted down and used for tools once a Smelting Crucible has been crafted. It can easily be worthwhile to only use Leather armor, and damaged metal armor looted from monsters, just to get the extra metal to get off the ground. Beware that only pristine items can be smelted in a crucible: used tools, armor, or weapons cannot. GregTech also introduce its own version of dungeons, Strongholds, which is a big place with several rooms with a lot of loot in them, including chances of lots of metals like (stainless) steel, early "machines" such as crucibles, oil, portals, etc. Exploring in GregTech can be a rewarding activity, too!

Phosphorus Dust, Sulfur Dust, Dry Grass, and Creosote Oil can be used to make Torches or Matches.

A final general note: Creative mode is your best friend to experiment things. Energy types, Steam pipes, Recipes in the Crucible: there is a lot of complex things in GregTech and in the beginning it can be very difficult to understand all the intricacies of the mod. So keep a Creative mode world on the side to test stuff. Also this guide may become obsolete quite quickly because GT is updated every week, so take everything written here with a little bit of salt.

The Stone Age

When you start a new map with GT6 you'll want to establish your base. But in doing so, take note of these pointers:

  • GT ores spawn either in veins (sometimes big ones) or lone ores that can be seen quite clearly if you have some wide space and few trees. As such a Desert is often the best place to start a base, bonus points if there's a Sand Lignite/Sand Coal vein there to help you start on fuel. There may also be Jasper there, and being able to make Flint&Tinder will come in handy later.
  • Villages are also a valuable starting point because of their Chests, which can contain precious materials you likely won't be able to craft yourself for a long time. The agriculture there is also a bonus, and trading with the villagers can help sometimes.
  • Spruce and Dark Oak Wood forests are best suited for GT axes (lots of vertical wood, even for big trees) and since you're going to need a lot of charcoal on a regular basis, having such resources at hand is valuable. Note that, like Dark Oak Wood, Spruce trees can be planted in a 2x2 fashion to have very big Spruce trees, ideal for GT Axes.

Since you start in the Stone age, you'll have to act like a cave person: Flint tools will be you primary focus. In GT6 Flint has a fire aspect, which is very convenient because it allows you to light targets on fire, which kills them more easily and often cook meat while killing animals. Flint tools may not have a lot of durability, but can be found in abundance (villages have gravel paths).

Flint tools are crafted with Flint and a single Stick.

You will also find Sticks and Rocks lying on the ground, which are very useful for your day one tools. Some Rocks will be pieces of Flint, most will be ore-bearing (sometimes signifying ores below the rock), but others will be stone.

Cobblestone Pickaxes, even though they have horrible durability (barely over ten Stone blocks), are really fast at mining Stone, so they are very good for branch or chunk mining (see general notes above), and they are basically free. Be careful though that GT replacement for Cobblestone pickaxes, like other Vanilla items, is not made the default to ensure compatibility with other mods that could use the replaced tools. To enable the GT recipes, you should look into Minetweaker scripts. GT stone tools can also be made from the stone Rocks you will find lying about on the surface and in larger caves.

You should also focus on your farming skills, since you'll be able to automate a lot of the food processing on that topic later on, and because farming is one of the only few renewable resources, you should take full advantage of it.

It is helpful to make either a GT Sword or Axe, as you will require an ignition source to build the vanilla Furnace, and continually for Burning Boxes later. This can be a Match, Lighter, Flint&Tinder, or Fire Starter. You may use the GT Sword to cut Grass to make a Fire Starter from dry grass via the Dry Grass Bale, or you can make a Fire Starter from Dry Tree Bark by right-clicking (and destroying) a Log with the GT Axe (but not the Mossy or Rotten logs). Under GregTech 6, only metals with a lower melting point can be smelted in a vanilla Furnace, certain notable ones are Copper, Tin, Bronze, Lead, Zinc, and Bismuth. All other metals must be melted, often alloyed, and subsequently cast, in a Smelting Crucible (heated by a Burning Box) and Molds for now.


Crafting your first crucible and learning the arts of smelting is of the utmost importance in playing GregTech 6.

Smelting

Smelting in a crucible is very basic, so basic there's not even a GUI for that.

A crucible is a block that you place on top of a Burning Box, and in which you'll throw your ingredients. Lighting up fuel in your Burning Box will make it produce heat upwards, onto the crucible, which will heat up as well, until it reaches a temperature high enough to melt its ingredients...or itself. You better get used to that because a lot of contraptions in the beginning of GregTech have no GUIs, so nothing is handed out to you: you have to do the work by yourself, and only later will you be able to automate more and more steps of your work process.

To begin, and to avoid going back and forth collecting materials, go on a mining operation to collect lots of clay, two red flowers, some amount of Stone, Wood, Flint, and Coal, enough Copper and Tin to make some Copper ingots and less Tin ingots, and 8 ingots worth of either Lead, Bronze, or Bismuth.

Combine Stone and Sticks to make Hammers (more than one will likely be needed, as Stone Hammers have very low durability). Place a Hammer and two Copper Ingots in a vertical line in your crafting grid to make a Double Ingot, then use the Hammer again with the Double Ingot to make a Bronze Plate. Two plates and a Stick combine to make a File. Craft another Copper Ingot with the File to make a Copper Rod. Combine a Plate, a Rod, a Stick, a Hammer, and a File to make a Chisel.

Copper and Tin cannot be efficiently combined without a crucible to make Bronze. To combine them, smelt Copper and Tin Ores into Ingots, then use Flint and Stone to craft a Mortar, and use the Mortar to crush the Ingots into Dusts. Create a mixer using hardened clay and the two red flower dyes plus the chisel. Then, craft 3 Copper Dusts and 1 Tin Dust in a mixer to get 3 Bronze Dusts.

Once you've done that, it is recommended to remake those copper tools with bronze, as they will last much longer and you will continue to use them. Craft six Bronze Ingots (in a Y-shape) with a Hammer in the center to make a Wrench. These are the mandatory initial tools to craft your first GregTech contraption: the Crucible.

Note: Additional tool, not mandatory but highly recommended: Pincers. Items cast in a Mold will be extremely hot, cool slowly (100 kelvins/second), and cause severe damage to a player who attempts to remove them. Right-clicking with a set of Pincers allows a player to extract the hot items as soon as they solidify. You can also use Lead or Bismuth but remember that a tool durability follow its materials, so a Bronze tool will be way more durable that a Lead one. But that said, you'll need a lot of Bronze in your GregTech career, for tools and machines, whereas Lead or Bismuth will be of much lesser use by then. So it's up to you to decide which material to use, as it happens so many times in GT.

Smelt 12 of the Clay balls into Bricks, combine the remaining Clay into Blocks, and smelt them into Hardened Clay. 7 Hardened Clay, a Hammer, and a Chisel combine to make a Ceramic Crucible. One Double Copper Plate (2 ingots + Hammer -> Double Ingot, + Hammer -> Plate; 2 Plates + Hammer -> Double Plate), 3 Brick Blocks, 4 Lead, Bronze, or Bismuth Plates, and a Wrench make a Burning Box. (Which of the three Burning Boxes crafted doesn't matter much yet; they serve the same purpose but work at different speeds/efficiency). Finally 5 Hardened Clay, a Chisel, and a Hammer craft into a Mold.

The standard basic Smelting Crucible is made of Ceramic, because it has a quite high melting point, allowing you to melt a lot of different metals and alloys. Be wary though that because it's very light, it heat up and cool down very quickly. It's very easy to go overboard with a crucible and safety measures, although efficient, won't be able to save you every time. Standard molds are also made from Ceramic because of the same melting point reason, and because Clay is easy to find, especially if you're near a river, a beach or a swamp.

Place the Crucible in a place that's not near anything flammable. Place the Burning Box directly below it, and make sure it has an air block in front of it. Place one or more Molds adjacent to the Crucible.

Note : Initially Molds have no pattern in them. The shape of item created by a Mold is determined by what shape is Chiseled into it: molds are GUI-less too. Molds have 25 spaces within them, which must be knocked out in specific patterns to yield specific items; if an invalid pattern is given, the Mold will instead produce a number of Nuggets. The page on Molds has a full list of all valid patterns, and there is an in-game book that lists all of them. To chisel a pattern into a Mold, right-click on its inner area with a Chisel. The chiseled piece will be knocked out of the Mold. Also note that removing Molds with a pickaxe should be made with caution because a mold entity that "jumps" in a crucible will be turned into Ceramic Scrap, rendering it useless. Preferably remove them with a Construction Pickaxe or Wrench as they have an auto-pickup feature.

Note: Despite NEI only showing pure metals being thrown into a Crucible, any shape of metal can be thrown in. Chunks, Dirty Dusts, Crushed Ores, undamaged metal tools and armor, anything except Ore Blocks. However, throwing in items other than pure metals will usually also partially fill the Crucible with Stone, which must be removed before the material in the crucible can be useful. Material that has been thrown into a Crucible can be removed as Scrap by right-clicking while the Crucible is cold. Right-clicking to remove material from a heated Crucible will result in the player taking very significant damage, most of the time lethal.

The Crucible is heated by the Burning Box under it. The material used to make the Box determines the rate at which it burns fuel, and its efficiency in doing so. However, to use the Burning Box, its fuel must be lit. Flint & Tinder is the GregTech equivalent of a Flint and Steel, but can be crafted using Flint and either an Iron nugget, Steel nugget, a gem of Quartz, Nether Quartz, Certus Quartz, or Chipped Jasper (uncommonly found in Deserts). There are other ways to start fires, such as by a Fire Starter. Feed the Burning Box with fuel by right-clicking it with conventional Furnace fuel (Coal, Charcoal, Saplings, ...). (Note : Once fuel has been inserted, it cannot be removed while the Box is lit). Once the Box has Fuel, right-click it with the Flint & Tinder to try and light it. This will likely take multiple tries because Flint & Tinder does not have a 100% success rate, more like 30%.

While active, the Burning Box will also periodically produce Ashes or Dark Ashes; right-click the Box with an empty hand to remove them (that's safe, you can do it while it's lit). Once lit, the Burning Box will continue to burn fuel until it runs out of it, or if its front side is blocked by an opaque block. This allows for an emergency shut-down, by placing a block of Dirt in front of an active Box.

Now some important safety warnings:

  • An active Burning Box will cause nearby flammable objects to catch fire (around 4 blocks away).
  • Touching (right-clicking or touching it with your body) a heated Crucible, or a Mold containing hot cast metal, will result in the player taking very heavy damage.
  • If an item or material inside a Crucible reaches its Boiling Point, or if an item falls in that has no listed boiling point, it will vaporize, dealing heavy damage to all players and mobs near the Crucible. This can include Molds, or the Crucible itself. Note : as material vaporizes, the Mass inside the Crucible decreases, causing it to heat faster. If a Crucible vaporizes, it will also vaporize all material inside it, and set several random nearby blocks on fire.
  • Be extremely cautious about placing blocks in front of a Burning Box because it will only shut down after it has burned its current fuel. So during your first experiences, it is recommended to use Lignite or even Saplings,to ensure that when you drop an opaque block in front of the Burning Box, it will stop quickly because it will have burned its current fuel quickly (Lignite and Saplings both are very inefficient fuel, compared to Coal and Charcoal). For instance if you put a Block of Coal in a Burning Box, light it, and immediately put a Dirt block in front of it, it won't shut down until it has burnt the whole block, which may heat your Crucible way past its melting point, vaporizing its content and itself into nothingness, wasting everything.
  • Removing a Burning Box by using a wrench will stop it immediately, and will allow you to retrieve ashes and unburnt fuel, but you will lose the currently burning fuel. This may be a safer emergency measure but be careful around touching the Crucible with your body, and remember that doing so consumes some of your wrench's durability.

Once the Burning Box below the Crucible is lit, it will start to heat the Crucible. The rate at which a Crucible heats depends upon the mass of the Crucible, and the mass of the metal inside it. Once the metal inside the Crucible melts, it can be casted into adjacent Molds by right-clicking the Mold. Note: The metal that will be casted into the mold is the one that has the highest melting point. For example, if your crucible is at 1360K and contains 3 units of Bronze and 1 unit of Copper, Bronze will be casted first and only after the 3 Bronze units have been casted will the Copper be casted as well. This is an interesting mechanic when you're not following the recipes exactly (like if you have melted a lot of Tetrahedrite into Copper, mixed it with Tin to make Bronze, and retrieved the excess Copper after casting the Bronze)

Some notes on Materials

You can smelt meat into Meat Bars (ingots), which can then be used to make very nourishing Hamburgers.

When in need, Chalcopyrite smelts as Copper, Cassiterite as Tin and Galena as Lead, and can all be smelted in a regular Furnace.

The notable approximate temperatures for early metalworking are:

  • Tin (550K)
  • Lead (650K)
  • Copper and Bronze (1350K)
  • Iron (1800K)
  • Wrought Iron (2000K)
  • Steel (2050k)
  • Titanium (1941K)
  • Gold (1500K), Stone (vaporizes at 2000K)
  • Ceramic (Crucible vaporizes at 2500K). By knowing these melting and boiling points, Crucible temperature can be roughly observed by looking at the color of the liquified metal in the Crucible until you craft a Thermometer. For instance if you mix Copper and Tin in a Crucible and heat it, you'll first see the liquid Tin (past 500K) and at some point later you'll see the Bronze (1350K). After you've poured the Bronze out of the Crucible, if there isn't any Bronze left, but there's still Copper, you'll see it liquefied (Bronze is a desaturated orange while Copper is a bright orange-red color). If there isn't Bronze nor Copper anymore, but there is Tin left, you'll see it liquefied (Tin is bright gray).

When the Crucible cool down too much, and goes below the melting point of a material everything goes back to the darkish solid state.

Note : If you've mixed different materials in the crucible, and if these materials do not all mix (like if you've thrown an Iron pickaxe, its Wood won't melt with its Iron regardless of the temperature), you'll never see the colored liquid state, whatever temperature the Crucible is, you'll only see the dark gray solid state. That's why you've have to respect recipes as much as possible until you can craft a thermometer.

Iron smelting is a bit of a special issue to handle. The primary source of Iron is Black Sand (aka Magnetite) (later on you'll encounter Yellow and Brown Limonite which are much more efficient to get iron from). Magnetite can be melted, but will not directly melt into Iron. In order to convert Magnetite into Iron, Dark Ashes must be mixed with the Magnetite. And as Dark Ashes can be most reliably obtained by running a Burning Box, you'll need to burn a fair bit of Coal or Lignite to get Dark Ashes for Iron. Luckily you'll have a lot of Bronze tools to craft in the beginning so burning Coal and Lignite to get Bronze will also yield Dark Ashes for you. Pyrite and legitimate Iron Ore are even better, but they're way harder to find. Hematite is easier to find but is a bit of a pain, because you have to smelt it with Dark Ashes AND Calcite (gotten from smelt marble or limestone).

Steel requires temperatures of around 2050K with a ratio of one part Carbon for 50 parts of Wrought Iron (Note: don't consider melting whole ingots, but rather tiny dusts, because the Crucible can only have up to 16 units). You can extract Carbon from Graphite Ore by washing it in a Cauldron; small Graphite Ore is found below y-level 20. Alternatively and far more easily, find Steel tools in dungeon treasure chests and throw these into the Crucible.

Hammers help you crush ores into crushed dusts (especially Copper and Tin that are found on a regular basis in caves), you'll get more material from an ore that way, especially if you wash them afterwards in a Cauldron.

One final note, but I'll write that again in another topic: Rubber can be smelted in the Crucible. Rubber plates are in fact Rubber sheets. Following the same principle you can also make Rubber rings with liquid Rubber. Be careful because you waste a part of the material in the process though. It's one of the "hidden recipes" that does not appear in NEI because the Crucible and Molds are GUI-less, so feel free to experiment on your own.

Before the Forge Age your current work process should more or less be:

  • Mining Ore (like Copper) or getting Impure Dusts from sparse Sand/Gravel Ores.
  • Crushing Ore to Crushed Dusts with hammers.

The next Age is more rewarding.

The Forge Age

Before diving in the wonderful world of machines and automation characterizing the Forge Age, you'll need some very convenient tools and contraptions.

  • An Iron Bucket. Made of 3 iron plates, 2 of them curved by hammering a plate on a rolling cylinder, it's your only way to carry Lava. Why would you want to have Lava ? Because Lava poured in a Crucible allows you to make Obisidan tools. Although their durability is not that great, since Lava can be found quite easily (especially if you open an early Nether Portal) and since Obsidian is a Tier 3, Fire Aspect material, Obisidan tools are the perfect upgrade after Flint ones: plentiful, efficient, and easy to make. Because Lava is hot, pouring a bucket of it in a Crucible will heat it immediately to Lava level (around 1000K) and you'll be able to pour the lava right away in tools shaped molds. That's the beauty of it: you don't even have to heat the Crucible with a Burning Box. For this very reason it's a good idea to find an underground lava lake beneath you base and keep a Crucible + tools molds there. Be careful when pouring because obsidian tools need to cool a bit before they can be safely picked up, or use pincers/hazmat suit when available. Tools retrieved from molds are "raw" and need to be sharpened to be of any use so finish them with a file, or better, a Sharpener. Of course you can use your Tools Molds with other materials, like Bronze.
  • A Thermometer or Thermometer Sensor. It's really easy to overheat the crucible without it. First you'll need a Thermometer. You will need Mercury, which you get by melting Cinnabar from a Redstone vein (found at heights 10-40). After you melt it down, you can take it directly out of the crucible with a glass bottle to use in the recipe. You can use this now by right clicking on blocks that can overheat like the crucible to see its temperature, or you can turn it into a Thermometer Sensor to place directly on the crucible which will constantly say the temperature and have the ability to output a redstone signal at certain temperatures. You'll need two Red Alloy Ingots (4 Copper + 1 Redstone = 1 Red Alloy Ingot). Be careful because Red Alloy burns off most of its mass once it hits its melting point so overheating is very easy. You'll also need some glass, and Tin Alloy which is made from Tin and Wrought Iron. A Thermometer Sensor is placed on the front of the Crucible. You'll need a wire cutter, a rolling cylinder and a hammer to turn red alloy plates into red alloy wire. It's a time effort to craft your first thermometer, but it's really worth it: you'll make tremendous progress in understanding the smelting process and in managing your Crucible safely.
  • A Cauldron is made of 7 Iron plates (or Wrought Iron plates so you can use them there if needed). The Cauldron is, with the Sifter and the Hammer, the next step in your ore mining process: throw in crushed ore and impure dust to clean them and get by-products. It's especially worth it to clean crushed ore because otherwise it'll bring a bunch of stone with it into the cauldron. You want to try to smelt washed, purified dusts as much as possible.
  • A Sifter costs 8 units of Steel, but it's your only way to manually process Sand and Gravel Ores, which are in huge veins, so it's well worth it to craft it as soon as possible. It's also the only way to get gems from gem ores. Right click Ore onto the top spot to place it there, then hold down right-click to sift the Ore, then, after it has passed through the Sifter, right click the bottom result to pull out the purified Ore and extracts. Crushed, purified gem ores can be sifted to get gems (this includes Lapis and Coal). Gravel can be sifted to get Flint, Quartzite and trace Clay. Dirt can be sifted to get pumpkin, wheat and melon seeds.
  • A Sharpener costs as much as a Sifter so only consider making one if you've found some Steel or a bunch of Graphite Ores, but the investment will pay off big time because sharpening your raw tools is almost a daily occupation in GregTech since you'll mine a lot and cut down tons of wood for Charcoal. Place your Sharpener on the ground, feed it Sandstone with a right-click in the middle of the Sharpener, and keep right-clicking your raw tools on it. After a few tries your tool heads will be sharpened, preventing you from using a file to do so, which costs time and resources.
  • If you use your Mixer for food it can go a long way if you frequently use Bread for food: Harvest your wheat (hint: use a Sense, it'll farm in a 3x3 pattern), grind it into Flour with a Mortar, right-click the Flour into the Mixer, and pour Water in with a Bucket (Iron or Wood made): right-clicking with an empty hand will get you Dough that you'll be able to craft into Bread or Baguettes, to be then cooked in a regular Furnace to make Sandwiches. You'll need 1 part Water to 3 parts flour so place your mixer near a well to spare yourself water trips. Or you can kill a lot of animals for eating, that works too!
  • A Dust Funnel may cost a bit of Steel but it may quickly become a valuable tool. Like the other contraptions it's GUI-less: you right-click dusts of any size (from blocks to 1/72th pile) and it will output through its bottom whatever dust size you set it to. To change the dust size (default is block size), just use a Monkey Wrench on it and you should see its internal funnel shrink in size until it returns to block size again. It may seems superfluous but once you'll have a steady ore processing facility, you'll enjoy not having to regroup all these dusts of various sizes.
  • The Reinforced Wooden Chest is a very good replacement for your good old double-block chest; it has the same capacity while only occupying one block. This is useful for when you start to build up you factory and all the machines and pipes start to be all around the place. Plus since you'll unvoluntarily hoard some materials (mainly Silver and Gold) while processing others (Copper for example has Gold as its by-product), you may soon realize that you can spare quite a lot of them in making these convenient chests.
  • An Advanced Crafting Table is all you ever dreamed of the Crafting Table: You can store components in its drawer, and they will automatically fill the blanks in the main crafting grids. You can pipe in fluids. You can keep you tools at hand. You can use blueprints to make your items automatically. And finally you can use automation to provide items and eject output. It's truly a blessing that come in a lot of different materials, even Lead so you can build it very early in the game !
  • GregTech has its own variation of Hoppers and you're going to love them. Like all other variable metal-based contraptions the material you use puts a burden on the Hopper's capacity, but even the most basic one can be of a great help, like feeding a Crucible with a lot of dusts (the crucible can only have up to 16 dusts and any you throw beyond the 16th will just vanish), extracting hot metal from a Mold, or automatically extracting ashes from a Burning Box. Being creative with a Hopper can be very rewarding, alleviating all the boring tasks and letting you focus on fun ones. Note that you can use a Screwdriver to tune a Hopper's stack size management.
  • A Bath (not to be confused with a Mixer Table) will help in handling dipping recipes, like Wood Pulp and Water into Paper or Wood Pipes and Creosote Oil into Wood Sealed Pipes. If you need to fill it with a portion of a Bucket , you can use a Measuring Pot. If you want to empty it, you can flush it with a Plunger but remember that its contents will vanish.

So, at the end of the Forge Age, your current work process is now:

  • Mining Ores/Collect Sand&Gravel Ores
  • Crushing Ores with a hammer, or Sift Sand&Gravel ores with your Sifter
  • Washing results in Cauldron to get by-products
  • Turning Ores into ingots, plates, etc. with the Crucible

Better, isn't it? But a lot of labor work. Why don't we start letting machines do the hard work for us?

The Steam Age

Your first machine

Now that you're more familiar with the Burning Box heating principle we're going to mess with scary, scary steam power. Steam, at this point of the game, is the only way to power your first machines.

As an explanation, let's make ourselves a Rolling Mill. It's a basic machine that does not require a lot of expensive materials, and building it will help you understand the Steam mechanic in GregTech. Additionally, it will be of continuous use throughout your GT Career, because it'll allow you to focus on storing ingots as plates.

Make a lot of Bronze and craft a Bronze Boiler, Funnel, some bronze small pipes (4/5 should be enough), a Bronze Steam Turbine, and a Bronze Rolling Mill.

Put the Boiler on top of the Burning Box like the Crucible. Place the Funnel on its side and put Water inside by right-clicking Water on it. Run pipes from its top hole to the back of the Steam Engine. Put the Rolling Mill in front of the Turbine.

When lit, the Burning Box will heat up the Boiler, just like it did with the Crucible. Water will slowly reach its boiling point and during that time the barometer will rise slowly throughout the left white section up until the green zone; that's the moment when you'll start to have Steam. Steam will flow through pipes and will go inside the Steam Turbine. The Steam Turbine with then use this Steam to make its internal turbine roll, which will generate rotational energy, measured in GregTech as RU/t.

Rotational energy is then consumed by your brand new Rolling Mill that will turn it into internal energy (measured in GU, always with a 1:1 ratio regardless of energy input type). Put an ingot in the Mill and it will transform into a brand new Plate !

Naturally, being a machine, the Rolling Mill does not wear off. You just have to feed it energy (RU in this case) to make it work.

The Hazmat Suit

Now as a more advanced tutorial, let's make ourselves a Hazmat Suit, which is a lot of work to do but will help you understand why Steam is awesome, and the suit itself will be of great use to you.

Note : If finding the necessary materials for a Coagulator is too much trouble for you, feel free to skip this whole part. The Hazmat Suit is a very nice thing to have, especially when you're not fully familiar with the Crucible, but it's not mandatory in any way.

First craft a Burning Box (Steel), Boiler Tank (Steel), and Steam Engine (Steel).

Craft a Bronze squeezer. To turn your Latex into usable, solid Rubber, you'll need a Coagulator, made of Stainless Steel. You'll need Iron, Nickel, Chromium (found in dungeon treasure chests or extracted from ruby ore, though not yet) and Manganese (found in dungeon treasure chests or extracted from grossular/spessartine/pyrolusite/tantalite, once again not yet). Ratio is 5 Iron to 2 Nickel to 1 Chromium to 1 Manganese. Alternatively, you can find some stainless steel in GT Stronghold chests. You'll need 12 ingots to build the Coagulator so you'll have to make 2 batches of 9 Stainless Steel each. First combine Iron and Nickel to make Invar, otherwise the Nickel will get permanently bound with the Chromium to make Kanthal, preventing you from completing the recipe.

When you have all your machines install them like you did for the Rolling Mill: run the Bronze Pipes from the top of the Steel Boiler to the back of the Steel Steam Engine, place the Squeezer in front of it and place the Coagulator under the Squeezer.

Then feed your Burning Box with fuel, your Boiler with Water, and your Squeezer with Sticky Resin. Light the Burning Box and wait for the Boiler to heat up to its green zone. After a couple seconds your Steel Engine will start to move its internal piston back and forth (no animation for the moment, just look at its color changing to green), and your Squeezer will happily squeeze your Sticky Resin into Latex. Since you're probably not using distilled water yet, your boiler will calcify, and may not provide enough energy. You may need to disconnect the pipe from the boiler temporarily so the pressure goes up before connecting it again so the Engine gets enough steam. The Coagulator will then suck up the Latex from the Squeezer, and slowly turn it into rubber bars. Note: a Coagulator does not use any energy.

Use your newly acquired Rubber, Orange Dye, Wool, Glass and Iron Bars to build a Hazmat Suit and Rubber Shoes. It'll protect you from all crucible accidents and it'll allow you to pick up hot finished metal from molds without pincers. Note : You have to wear the whole set (Head, Chest, Legs AND the Rubber Shoes) for it to work as heat retardant. If even only one piece is missing, you lose the effect completely, so be careful when using your Rubber Shoes everywhere. Note also that the Hazmat Suit does not lose durability from using it to get stuff from molds, or even handling radioactive elements. It loses durability when you take damage.

Energy Types and Efficiency

So, to sum up the previous tasks, you used heat (measured in HU/t) to power a Boiler (which converts HU/t to Steam/t) to power a Turbine (which converts Steam/t to RU/t) or an Engine (which converts Steam/t to KU/t) to power a Rolling Mill (which converts RU/t to internal GU/t) or a Squeezer (which converts KU/t into internal GU/t), and in the case of the Squeezer, transferred its content into a Coagulator (which uses time as a resource, measured in ticks (t), or seconds (1 sec = 20 ticks)).

There are several more energy types you should be aware of so here's a list of all of them:

  • HU/t is Heat energy. Made from Burning Boxes and Electric Heaters, you already know them for their use with a Crucible and a Burning Box, but HU is used by a lot of very useful machines.
  • KU/t is Kinetic energy. Made by a piston going back and forth, it's the energy required by a Crusher, a Sifter and a Compressor.
  • RU/t is Rotation energy. RU/t is very important because it's used by a lot of basic machines, so having several good RU/t producers is critical.
  • EU/t is Electric energy. Encountered later (during the Electric Age) you may already know EU/t as IC2 Energy system. Well you can just keep your general understanding of the concept and scap anything specific because it changes quite a lot in GregTech.
  • MU/t is Magnetic energy. Generated by Magnets, it's a less-frequently used energy type but don't worry, you'll have to use it at some point too.

Another point to consider is your machines efficiency, starting by the Burning Box, which is at the very beginning of your chain. As you've read earlier, a Burning Box can be made of several materials, which can then themselves be of basic or dense state. Theses two parameters has a dramatic influence on the Burning Box's resulting theoretical output and efficiency.

For instance a Steel Burning Box is mildly powerful (32 HU/t), but it has an efficiency of 70%, while an Invar Burning Box, although less powerful (16 HU/t), has an outstanding 100% efficiency. The efficiency means your fuel will last more, and since you'll be burning a lot of fuel, having a perfect efficiency may sometimes be more important than raw heating power. Or course nothing prevents you from using a Burning Box at some point and then replace it for another one, under the same Boiler.

This efficiency rate is applied to almost all machines, so do not hesitate to do some math to understand what you need, and how you're going to produce the needed energy type and at which rate you're going to produce it. Again, I cannot stress enough the fact that you should read the tooltips again and again.

If you overlook this two major things may happen to your engines: they will be underpowered and may not even start, or they will overflow and even explode. You may restrict the flow of Steam your boiler will produce with pipes (look at their tooltip to see their maximum bandwidth) but limiting the flow can have another undesired effect: Steam pressure will build up in your Boiler. If your Boiler go beyond the red zone, it will explode, and the blast radius isn't small. So be careful and think about what you're doing: Read the tooltips, adjust your math accordingly, and play it safe.

Making a machine is a long process; it would be a shame to waste all these efforts, wouldn't it?

Calcification

Calcification is a nasty consequence of boiling natural Water. The water you'll use in the beginning is considered impure. This water, when boiled, will slowly but surely calcify your Boiler, making it less and less efficient over time: for a given quantity of HU, it will output less and less Steam.

You can safely check the calcification status of your boiler by using a Magnifying Glass so craft one as soon as you've found one of its possible glass crystal components. You can make this check at any time, even when your Boiler is running.

You can decalcify a Boiler by using a Chisel, but only if it has stopped running and its internal pressure has gone down to the white zone, and you better have a Hazmat Suit because if it's still hot because you may instantly die otherwise.

You can also decalcify a Boiler by removing it with a wrench and putting it on the Burning Box. This is the safest way, but it uses your Wrench's durability.

In both scenarios, decalcifying will empty the Boiler of its contents (Steam and Water) so remember to fill it up again with water afterwards.

To avoid Calcification you have to use Distilled Water instead of regular Water. Making Distilled Water is quite easy, because each Steam consumer engine (Turbine and Engine) emit 80% of its used Steam as distilled water on its sides, so you can plug fluid pipes all around them and collect the generated distilled water into Tanks or Drums (more on that later). There will be many more ways, each one more quick and efficient than the previous, to make Distilled Water later in the game.

Basic Machines

Now that you are more confident in getting your items parts from casting liquid metals and alloys into Molds, a word on this topic: You should craft almost all Molds as soon as possible. You're going to make more and more machines which will need more and more machines parts like Gears, Rods, Bolts, Plates, and so on. You'll be able to craft these with Ingots and Tools, but in doing so you'll lose a significant quantity of material in the process: For instance, crafting a Plate (1 unit) means hammering two Ingots (1 unit each) together and hammering the double Ingot to get the Plate. So you "paid" 2 units of material and 2 hammer crafting uses for 1 unit worth of Plate. If you've had a Plate mold you could have directly casted the material as a Plate, costing you only the unit worth of material you've put in your Crucible.

So think about what you want to make, and prepare your materials manufacturing list in advance: You can make batches of Plates, Rods, Gears to avoid having to craft them afterwards. Only exception are Screws, which will need a Lathe to make instead of casting material in a Mold.

Now your biggest concern will be what to make next. As always with GregTech the answer is simple: More machines to help us make even more machines !

Your basic machines will be ones that help you build more machines:

  • Automatic Hammer (KU-based, back side): Will crush ores you manually place in front of it. The material that the Automatic Hammer is made out of does not determine what ores it can crush.
  • Compressor (KU-based, left side): Can compress plates, which is used for making Dense or Strong burning boxes, Engines, and Boiler tanks, which are four times as powerful with the same efficiency (although if you use recipies meant for the tier below, it will use two times the energy and four times the energy/tick, but be twice as fast.) Make sure your machines and pipes can handle the boost in steam though, or they may/will explode!
  • Rolling Bender (RU-based, back side): Mainly transforms Plates into Curved Plates and Rods into Springs. Worth having because you'll use your Rolling Bender quite often when you start to make pipes, batteries, and rotors, which require a lot of Curved Plates.
  • Lathe (RU-based, back side): Mainly transform Bolts into Screws. Useful because screws have no Mold of their own, and are a rip-off to craft from bolts, cost-wise. It also makes Sticks out of Planks quickly.
  • Shredder (RU based, left or right side): Transform almost everything into dust, including machines, except ores (Crusher will do that). Very useful as a recycler of old, obsolete machines/engines. Can also turn Wheat into Flour and Scraps into Dust. In other words, an automatic, higher-tiered Mortar.
  • Mixer (RU-based, bottom side): Replaces your table Mixer if you've got one but it's way more efficient since you can feed it water automatically (more on Liquids later)
  • Buzzsaw/Cutter (RU-based, back side): A little trickier to craft because of the Diamond Dust requirement, the Buzzsaw/Cutter is your Saw replacement, and can also turn gems into plates, so it's a direct dependency to the Crusher (Diamond Plates). It's also very efficient in turning logs into planks.
  • Sluice (RU-based, back side): The Sluice is one of the most rewarding machines because it does the first "Wash in Cauldron" step way better than you could ever do, even with redstone contraptions that fill your Cauldron, and more reliably. You can put a Chest on top of a Sluice, feed it lots of Crushed Dusts and go about your business while it safely washes all of your dusts. A Sluice need water from its top slot and produces Sluice Juice which you can collect in a Tank/Drum to later Centrifuge it or Dry+Magnet Separate it into other by-products.
  • Centrifuge (RU-based, bottom side): The Centrifuge is the last of the basic machines but also the most rewarding because it does the second "Wash in Cauldron" step way better than you could ever do, even with redstone contraptions to fill your Cauldron, and more reliably. You can put a Chest on top of a Centrifuge, another one on its right, feed it with a ton of Impure Dust and go about your business while it safely takes care of your dusts. The Bronze variant will do almost all basic centrifuge recipes, but you may soon realize that a lot of recipes need a more powerful Centrifuge, so a Steel might get appealing then (but it will obviously require a more powerful Turbine).

Note: Unlike IC2, GT Machine are always running (that is, until you've made some specific Covers for them to not do so), so if you're not using a machine, do not forget to unplug its pipe (use your wrench to "undo" the pipe that enter the machine) from the main Steam supply. You wouldn't want to waste Steam, would you ?

Once you've got the necessary requirements, it's time for your two bad boys: the Crusher and the Sifter. These two will replace the most tedious work you've done until now: crushing ores with your hammers (using a ton of them in the process, and a ton of time to use/make them) and sifting sand/gravel ores (which is just time consuming if you've built the Sifter). Both use KU so your Titanium setup, if you went along the HazMat path (if not better start now) will be of good use here.

Now your work process may still be not 100% automated, but all the hard work (making machine parts, grinding Ores into purified dusts) should now be handled by machines, leaving you plenty of time to harvest more and more Coal/Charcoal to feed your neverending Burning Boxes.

But, as usual now, some notes before diving in the next Age.

Multiblock Machines

What's more fun than building machines ? Building bigger machines, of course !

  • You'll build a Coke Oven quickly after you have build you first burning box, because it's the only way to get Charcoal out of Wood. The Steel requirement may seem steep but you won't regret it. It also produces Creosote Oil and can process Purified Lignite Ore as well as Purified Coal Ore. In terms of fuel power, the ranking is as follows:
    • Lignite (2)
    • Lignite Coke (4)
    • Coal/Charcoal (8)
    • Coal Coke (16). Note that Lignite Coke, although being half as powerful as Coal/Charcoal, can be found in much greater quantities, and the Coke Oven will produce more Creosote Oil out of it.
  • A Distillation Tower will come later, and will be a milestone on its own, but there's nothing like having a giant refinery in your own backyard. Of course you can use BuildCraft Oil Springs in it.

Liquids and Gases

GregTech has many methods of storing fluids:

  • Ceramic jugs and measuring cups. These are essentially buckets 2.0, able to be placed and able to store specific amounts of any liquid (below 2000K). They cannot place liquids, but can be drank from.
  • Barrels (or drums for higher tiers) are in many forms, each with different capacities and different storage capabilities. Machines will insert into and extract from them directly, and it also has the ability to be piped into. You can also insert and extract fluids manually with funnels and taps. If you want to extract into a pipe, you will have to use a Compact Electric Pump as a cover. Contrary to its name, it does not require any electricity.
  • Tanks are 3x3 expensive multiblock fluid tanks that can store vastly more fluids than drums can. They can automatically output fluids to pipes through the valve if gravity allows it to.

Compact Electric Pumps can run without energy (so, for free) so craft yourself a couple; you won't regret it, especially when you start juggling Drums to transform Water into Distilled Water or Sluice Juice, and then use these fluids for other tasks later. Put a cover on a pipe, adjust its flow direction with a Screwdriver if necessary and it will suck up the fluid from a Tank/Drum and inject it into the pipe.

You can also connect two machine's input/output sides to each other by using fluid pipes. For instance you can pipe the fluid output of a Sluice into the fluid input of a Centrifuge, similar to putting the Coagulator under the Squeezer. Likewise you can plug Item pipes in and out of machines to carry your items automatically from/into chests or other machines.

You can just put a Tank or Drum directly next to a machine's fluid input/output and the machine will import/export the fluid with it. Note: It may take a little bit of time for the machine to "detect" the Tank or Drum.

Machine Chains

One of the prevalent aspect of GT is production chains. Machines are your basic components that you utilize in several combinations, each one more and more complex, to easily and reliably achieve your goals in automation.

To inspire you, and to introduce some of the lesser known (but not so less useful) machines here are a Production Chain list you can refer to:

  • Machine Parts factory: Rolling Mill/Rolling Bender/Cutter/Lathe. You input Ingots and end up with Plates, Curved Plates, Springs, Rods, Screws, and so on. A good one to start with because you'll use it to make all the other chains, obviously.
  • Ore Processing Plant: Crusher/Sifter → Mixer → Shredder → Centrifuge. You input ore blocks and end up with Pure Dusts, a lot of by-products (and pretty Stone Dust for your walkways), and Sluice Juice. Take note of the requirements on some machines.
  • Bread Mill: Shredder → Mixer → Furnace/Smelter. You input Wheat and get Bread Dough, that you can then cook to make Bread, and then Sandwiches !

- Bioethanol Rig: Shredder → Fermenter → Distillery. You input plants (Saplings, Logs, ...) and get Ethanol and Distilled Water. Ethanol can then go in a Liquid Burning Box as fuel, while the Distilled Water can replace regular Water in your Boiler.

- Saw Mill: Buzzsaw → Lathe. You give it logs and it gives back Planks and Sticks at a ratio better than vanilla Minecraft's.

Of course in the beginning you will struggle to make a chain, having to switch machines between your few engines/turbines but slowly but surely, if you keep some clear production chain goals, you will see the results!

The Electric Age

Steam will still be your main power production for a while but at some point you'll start to feel the need to store all this energy, maybe to use later at a much higher rate, or just because you have a fuel excess you are already burning anyway. You may also be interested in other energy types like MU, renewable energy, or just want higher-tier, more efficient and powerful machines.

For all these needs, at some point you'll have to step up to the Electric Age.

The Electric Age is not a completely different Age from the Steam Age. Actually in the beginning you will use a lot of Steam to create your Electricity. So don't scrap away your set of pipes and engines; you're going to use these almost the same way, to power up batteries. These batteries will then power electric machines, which are much more efficient than the Steam ones.

Make a ton of stainless steel until you can make a Distillation Tower. Put Oil into it and light the front until you have enough plastic pulpto make a plastic sheet. Make a press and combine it with quartz dust to make a Circuit Plate, then make copper circuit wiring and combine them with the press to make a Circuit Plate (Copper).

You will need crystalline silicon. You need to smelt Certus Quartz until it turns into Silicon Dioxide, then combine it with carbon or dark ashes to make Silicon Dust. Make a Chromium or better crucible. (You can make a Niobium Titanium or Meteoric Steel crucible at this point instead, but the process for making Titanium is very complicated and Meteoric Steel is a very rare drop from rocks on the ground.) Find an platinum vein (Height 40-50) and mine enough Iridium Ore for 7 plates (or find some in chests). Be very careful not to overheat your iridium ore as the melting point for iridium is only 6 K below the melting point for the Chromium Crucible. Make an iridium crucible and then use it to make a Crystallisation Crucible. Use your silicon in it with Helium, Neon, or Argon (which you can get by centrifuging nether air) and you get a Silicon boule, which you can cut into crystalline plates for circuit parts which are used in the press to finish the Circuit Board, which you then combine with molten lead in a bathing pot to make a Circuit.

Your starting batteries are made of Battery Alloy. Made from Lead and Antimony (following a 4:1 ratio), Battery Alloy will allow you to build Battery Hulls; these Hulls are to be filled with various substances that can chemically store Electricity. The very basic one is Redstone, but more are to come, like Electrotine or Teslatite.

Charging your batteries means creating electricity first, and for that you'll be needing a Steam Turbine and a Dynamo. The Turbine produces RU and this energy is consumed by the Dynamo to make EU. Connect a Steam Turbine, a Dynamo, and a Battery Box together and put Redstone Batteries in there. They will slowly charge up as the Turbine receives Steam. The materials involved dictate Steam requirements and the generated EU. As with the basic machines, be careful when you're crunching your numbers to decide what to build and read all the tooltips.

Advanced machines may explode by using the improper Voltage or Amperage...

Electricity

The two main aspects of electricity, Voltage and Amperage, are modeled in GT6. This means that instead of following a simple tier system, where you just have to make sure the numbers of two tooltips match (32EU/t in a wire, 32EU/t in a machine), GT allows you to feed a variable amount of electricity in your machines, so that you can slightly underpower or slightly overpower a machine, like you did with Steam albeit sometimes involuntarily because of Boiler calcification. Too large of a deviation will result in either an inactive machine or an exploding one. Always plan ahead.

Electric machines and wires, are defined by their ability to support Voltage and take in Amperage. The product of the two is power, expressed as where is Power, is Voltage, and is Amperage. As long as you're careful with these two values, everything should be fine.

Amperage is defined by the number of batteries you use at once in the battery charger. 1 battery means an Amperage of 1, 2 means an Amperage of 2, and so on. So you can tune your Amperage in real time if needed.

Voltage is more like the EU tier you are used to. Machines need to support the circuit Voltage to be able to let the Amperage do its work. Voltage is also your basic tier converter with IC2 setup, so you can use a Polarizer/Magnetizer combo with Tin Cable powered by a Battery Box, for instance.

When you have a solid electric charging setup, you should consider crafting Solar Panels, because renewable energy alleviates the need for fuel for your batteries, and mostly because it'll require a lot of thinking, crafting, and general GT machine usage to do so. Nuclear energy can then be considered too, but of course be careful around radioactivity, and the blast radius.

Finally, you have electric tools, laser technology, the Robotic Age, and many other things not covered in here that will help you automate more and more steps in more and more complex work processes and production chains...

One final word: GT6 is in continuous developement so feel free to check in regularly to see everything new.

And, as always, good minin' and good craftin'!

Advertisement