Large Turbine

From Feed The Beast Wiki
Jump to: navigation, search
This page contains changes which are not marked for translation.

Large Turbine




ModGregTech 5 Unofficial
TypeSolid block
Turbine Casing

ModGregTech 5 Unofficial
TypeSolid block
Turbine




ModGregTech 5 Unofficial
TypeItem

The Large Turbine is a multiblock generator added by GregTech 5 Unofficial. It is capable of producing large amounts of Energy Units (EU). It comes in 4 variants: Steam, High Pressure, Gas, and Plasma. The amount of Steam/Gas/Plasma used depends on the Turbine built in. It slowly speeds up, so it should be used for constant Energy supply.

The main Turbine block changes the fluids the turbine can run with.

  • A Large Steam Turbine runs on Steam and IndustrialCraft 2 Steam and will output Distilled Water in addition to the Energy Units.
  • A Large High Pressure Turbine runs on Superheated Steam from IC2 (can also be produced with Large Heat Exchanger) and will output regular Steam in addition to the Energy Units.
  • A Large Gas Turbine runs on Methane, Hydrogen and Biogas.
  • A Large Plasma Generator runs on all types of plasma generated in the Fusion Reactor.

The Large Turbine requires a turbine rotor. Turbine rotors vary greatly in size and material and contribute efficiency, durability and optimal flow modifiers to the running of the turbine.

  • Durability: About every 3000 ticks, the turbine takes 20% of the EU/t generated damage. In the Plasma Generator the damage is \frac{EU}{t}^{0.7}.
  • Durability in GT5U: About every 1000 ticks, the turbine takes 20% or \frac{EU}{t}^{0.6}(whatever is smaller) of the EU/t generated damage.
  • Efficiency: A percentage factored into the power output of the turbine.
  • Optimal Flow: How much steam/gas/plasma/lava is required to attain ideal power production

Recipes[edit | edit source]




Total: 16000 EU
Usage: 100 EU/t
Voltage: 100 EU
Amperage: 1
Time: 8 secs



Total: 128000 EU
Usage: 400 EU/t
Voltage: 400 EU
Amperage: 1
Time: 16 secs


Total: 1024000 EU
Usage: 1600 EU/t
Voltage: 1600 EU
Amperage: 1
Time: 32 secs



Total: 8192000 EU
Usage: 6400 EU/t
Voltage: 6400 EU
Amperage: 1
Time: 64 secs

Building the Multiblock[edit | edit source]

Build the edges of a 3x3x4 Block with Turbine Casings
The Main Turbine Block comes in the front Center, the surrounding blocks become a turbine texture

The Large Turbine is assembled as a 3x3x4 (long) multiblock structure. The entire frame must be made from Turbine Casings.

The Front-Center of the multiblock must be a Main Turbine Block. The Back-Center must be a Dynamo Hatch.

The sides (including top and bottom) must include:

  • 1 or more Input Hatches
  • 1 Output Hatch (required for Steam and High Pressure turbines)
  • 1 Maintenance Hatch
  • 1 Muffler Hatch (required for Gas Turbine)

The remaining sides are Turbine Casings. The two center blocks remain air blocks. The 9 Blocks in front of the Turbine also must be air blocks.

After that, a Turbine must be placed in the top-right slot in the turbine gui. After fixing the maintenance issues in the maintenance hatch, the turbine can be started with a hit from a soft hammer.

Once the turbine has been started, it will continue in "On" mode until it is deactivated (intentionally or otherwise). It will not deactivate by running out of steam.

Rotors[edit | edit source]

This table lists the attributes of all available turbine materials. The "Flow" attribute given is the optimal L/sec for Steam Turbines. To find the optimal EU/t for Plasma Turbines, multiply the "Flow" attribute by 2. To find the optimal EU/t for Gas Turbines, divide the "Flow" attribute by 20.

Material Small Turbine Turbine Large Turbine Huge Turbine
Durability Efficiency Flow Dur. Eff. Flow Dur. Eff. Flow Dur. Eff. Flow
Blaze 1600 60 1000 3200 85 2000 4800 110 3000 6400 90 4000
Epoxid 3200 60 3000 6400 85 6000 9600 110 9000 12800 90 12000
PTFE 3200 60 3000 6400 85 6000 9600 110 9000 12800 90 12000
Polycaprolactam 3200 60 3000 6400 85 6000 9600 110 9000 12800 90 12000
Graphene 3200 60 6000 6400 85 12000 9600 110 18000 12800 90 24000
Carbon 6400 70 1000 12800 95 2000 19200 120 3000 25600 100 4000
Lead 6400 60 8000 12800 85 16000 19200 110 24000 25600 90 32000
Midasium 6400 70 12000 12800 95 24000 19200 120 36000 25600 100 48000
Beryllium 6400 70 14000 12800 95 28000 19200 120 42000 25600 100 56000
Gold 6400 70 12000 12800 95 24000 19200 120 36000 25600 100 48000
Electrum 6400 70 12000 12800 95 24000 19200 120 36000 25600 100 48000
Astral Silver 6400 70 10000 12800 95 20000 19200 120 30000 25600 100 40000
Mithril 6400 80 14000 12800 105 28000 19200 130 42000 25600 110 56000
Nichrome 6400 70 6000 12800 95 12000 19200 120 18000 25600 100 24000
Bismuth 6400 60 6000 12800 85 12000 19200 110 18000 25600 90 24000
Platinum 6400 70 12000 12800 95 24000 19200 120 36000 25600 100 48000
Infused Gold 6400 80 12000 12800 105 24000 19200 130 36000 25600 110 48000
Kanthal 6400 70 6000 12800 95 12000 19200 120 18000 25600 100 24000
Cupronickel 6400 60 6000 12800 85 12000 19200 110 18000 25600 90 24000
Silver 6400 70 10000 12800 95 20000 19200 120 30000 25600 100 40000
Nickel 6400 70 6000 12800 95 12000 19200 120 18000 25600 100 24000
Tin Alloy 9600 70 6500 19200 95 13000 28800 120 19500 38400 100 26000
Aluminium 12800 70 10000 25600 95 20000 38400 120 30000 51200 100 40000
Sterling Silver 12800 70 13000 25600 95 26000 38400 120 39000 51200 100 52000
Rose Gold 12800 70 14000 25600 95 28000 38400 120 42000 51200 100 56000
Black Bronze 25600 70 12000 51200 95 24000 76800 120 36000 102400 100 48000
Bismuth Bronze 25600 70 8000 51200 95 16000 76800 120 24000 102400 100 32000
Bronze 19200 70 6000 38400 95 12000 57600 120 18000 76800 100 24000
Thaumium 25600 80 12000 51200 105 24000 76800 130 36000 102400 110 48000
Iron 25600 70 6000 51200 95 12000 76800 120 18000 102400 100 24000
Magnetic Iron 25600 70 6000 51200 95 12000 76800 120 18000 102400 100 24000
Meteoric Iron 38400 70 6000 76800 95 12000 115200 120 18000 153600 100 24000
Wrought Iron 38400 70 6000 76800 95 12000 115200 120 18000 153600 100 24000
Pig Iron 38400 70 6000 76800 95 12000 115200 120 18000 153600 100 24000
Ironwood 38400 70 6000 76800 95 12000 115200 120 18000 153600 100 24000
Invar 25600 70 6000 51200 95 12000 76800 120 18000 102400 100 24000
Magnalium 25600 70 6000 51200 95 12000 76800 120 18000 102400 100 24000
Manganese 51200 70 7000 102400 95 14000 153600 120 21000 204800 100 28000
Steel 51200 70 6000 102400 95 12000 153600 120 18000 204800 100 24000
Magnetic Steel 51200 70 6000 102400 95 12000 153600 120 18000 204800 100 24000
Fiery Steel 25600 80 8000 51200 105 16000 76800 130 24000 102400 110 32000
Black Steel 76800 70 6500 153600 95 13000 230400 120 19500 307200 100 26000
Dark Steel 51200 80 8000 102400 105 16000 153600 130 24000 204800 110 32000
Red Steel 89600 70 7000 179200 95 14000 268800 120 21000 358400 100 28000
Blue Steel 102400 70 7500 204800 95 15000 307200 120 22500 409600 100 30000
Meteoric Steel 76800 70 6000 153600 95 12000 230400 120 18000 307200 100 24000
Neodymium 51200 70 7000 102400 95 14000 153600 120 21000 204800 100 28000
Magnetic Neodymium 51200 70 7000 102400 95 14000 153600 120 21000 204800 100 28000
Uranium-235 51200 80 6000 102400 105 12000 153600 130 18000 204800 110 24000
Uranium-238 51200 80 6000 102400 105 12000 153600 130 18000 204800 110 24000
Plutonium-241 51200 80 6000 102400 105 12000 153600 130 18000 204800 110 24000
Plutonium-244 51200 80 2000 102400 105 4000 153600 130 6000 204800 110 8000
Thorium 51200 70 6000 102400 95 12000 153600 120 18000 204800 100 24000
Fluxed Electrum 51200 80 16000 102400 105 32000 153600 130 48000 204800 110 64000
Molybdenum 51200 70 7000 102400 95 14000 153600 120 21000 204800 100 28000
Brass 9600 60 7000 19200 85 14000 28800 110 21000 38400 90 28000
Cobalt Brass 25600 70 8000 51200 95 16000 76800 120 24000 102400 100 32000
Cobalt 51200 80 8000 102400 105 16000 153600 130 24000 204800 110 32000
Chrome 25600 80 11000 51200 105 22000 76800 130 33000 102400 110 44000
Vanadiumsteel 192000 80 3000 384000 105 6000 576000 130 9000 768000 110 12000
Stainless Steel 48000 70 7000 96000 95 14000 144000 120 21000 192000 100 28000
Enderium 25600 80 8000 51200 105 16000 76800 130 24000 102400 110 32000
Palladium 51200 70 8000 102400 95 16000 153600 120 24000 204800 100 32000
Titanium 160000 80 7000 320000 105 14000 480000 130 21000 640000 110 28000
Tungsten 256000 80 7000 512000 105 14000 768000 130 21000 1024000 110 28000
Tungstensteel 256000 90 8000 512000 115 16000 768000 140 24000 1024000 120 32000
TungstenCarbide 128000 90 14000 256000 115 28000 384000 140 42000 512000 120 56000
Knightmetal 102400 80 8000 204800 105 16000 307200 130 24000 409600 110 32000
Damascus Steel 128000 70 8000 256000 95 16000 384000 120 24000 512000 100 32000
Enriched Naquadah 128000 90 6000 256000 115 12000 384000 140 18000 512000 120 24000
Iridium 256000 80 6000 512000 105 12000 768000 130 18000 1024000 110 24000
Osmium 128000 90 16000 256000 115 32000 384000 140 48000 512000 120 64000
Osmiridium 160000 80 7000 320000 105 14000 480000 130 21000 640000 110 28000
HSS-G 400000 80 10000 800000 105 20000 1200000 130 30000 1600000 110 40000
HSS-E 512000 90 10000 1024000 115 20000 1536000 140 30000 2048000 120 40000
HSS-S 300000 90 14000 600000 115 28000 900000 140 42000 1200000 120 56000
Ultimet 204800 90 9000 409600 115 18000 614400 140 27000 819200 120 36000
Desh 12800 80 1000 25600 105 2000 38400 130 3000 51200 110 4000
Steeleaf 76800 80 8000 153600 105 16000 230400 130 24000 307200 110 32000
Naquadah 128000 90 6000 256000 115 12000 384000 140 18000 512000 120 24000
Naquadria 51200 90 1000 102400 115 2000 153600 140 3000 204800 120 4000
Naquadah Alloy 512000 100 8000 1024000 125 16000 1536000 150 24000 2048000 130 32000
Duranium 512000 100 16000 1024000 125 32000 1536000 150 48000 2048000 130 64000
Tritanium 1024000 110 20000 2048000 135 40000 3072000 160 60000 4096000 140 80000
Adamantium 512000 100 10000 1024000 125 20000 1536000 150 30000 2048000 130 40000
Neutronium 65536000 110 24000 131072000 135 48000 196608000 160 72000 262144000 140 96000

Math[edit | edit source]

Optimal Flow and Nominal Output[edit | edit source]

Optimal Flow is the flow rate required to achieve optimal output for the turbine. Each turbine rotor has a specific optimal flow rate, which is further defined by the type of turbine it is installed in (Steam vs HP Steam vs Gas vs Plasma). It is important to understand that the "Optimal Steam Flow" displayed on the tooltip for a Turbine Rotor is specific to the Large Steam Turbine. Optimal Flow for all Large Turbine types (including Steam) is calculated as:

\text{Optimal Flow} = \frac{\text{Nominal Output}}{\text{Fuel Value}}

Nominal Output[edit | edit source]

To determine nominal flow rate, the actual nominal output must first be determined. Each Large Turbine type has a multiplier to the stated (tooltip) Optimal Steam Flow which is used in the calculation.

Turbine Type Nominal Output
Steam Optimal Steam Flow / 2
HP Steam Optimal Steam Flow
Gas Optimal Steam Flow
Plasma Optimal Steam Flow * 40
Nominal Output Examples[edit | edit source]
  • A Large Steam Turbine using a "10000 L/sec" turbine item has a nominal output of (10000/20) / 2 = 250 EU/t.
  • A Large Gas Turbine using a "10000 L/sec" turbine item has a nominal output of (10000/20) = 500 EU/t.
  • A Large Plasma Turbine using a "10000 L/sec" turbine item has a nominal output of (10000/20) * 40 = 20000 EU/t.
  • A Large Plasma Turbine using a "40000 L/sec" turbine item has a nominal output of (40000/20) * 40 = 80000 EU/t.

(Flow is divided by 20 to get the rate in volume per tick instead of volume per second)

Fuel Values (not all listed)

Fuel Type Value
Steam 0.5 EU/L
HP Steam 1 EU/L
Biogas 32 EU/L
Helium Plasma 4096 EU/L

Calculation[edit | edit source]

Using \text{Optimal Flow} = \frac{\text{Nominal Output}}{\text{Fuel Value}}

Steam: \frac{10000 L/s}{2} \div / (0.5) = 10,000 L/s\ or 500 L/t

Biogas: \frac{10000 L/s}{32} = ~312 L/s\ or ~16 L/t

Helium Plasma: \frac{10000 L/s \times 40}{4096} = ~98 L/s\ or ~5 L/t

Efficiency[edit | edit source]

A turbine's actual output is \frac{\text{Nominal Output} \times \text{Efficiency} }{100}. \text{Efficiency} is expressed as a percentage. A turbine can work with up to 150% of its optimal flow, but no power will be generated from the surplus. If supplied with less, the turbine will still run, but an additional efficiency modifier will be applied to the output as \text{Flow Efficiency} = \frac{\text{ActualFlow}}{\text{Optimal Flow}}. Therefore A Large Gas Turbine using a "10000 L/sec 110% Efficiency" turbine rotor has a actual output of (10000 EU/t \div 20) \times 1.10 = 550 EU/t.

Spin Up / Spin Down[edit | edit source]

Large Turbines have a spin up time of 50 seconds and slow down over a period of 10 seconds, at which point they are not operating at full efficiency.


Other languages: